
fastecdsa Documentation
Release 1.7.4

Anton Kueltz

Oct 01, 2019

Contents:

1 Installation 1
1.1 Installing Dependencies . 1

2 fastecdsa 3
2.1 fastecdsa.curve . 3
2.2 fastecdsa.ecdsa . 4
2.3 fastecdsa.encoding . 5
2.4 fastecdsa.encoding.der . 5
2.5 fastecdsa.encoding.pem . 6
2.6 fastecdsa.encoding.sec1 . 6
2.7 fastecdsa.keys . 7
2.8 fastecdsa.point . 8
2.9 fastecdsa.util . 10

Python Module Index 11

Index 13

i

ii

CHAPTER 1

Installation

The only actively supported operating systems at this time are most Linux distros and OS X.

You can use pip: $ pip install fastecdsa or clone the repo and use $ python setup.py install.
Note that you need to have a C compiler (you can check this via e.g. $ which gcc or $ which clang). You
also need to have GMP on your system as the underlying C code in this package includes the gmp.h header (and links
against gmp via the -lgmp flag).

1.1 Installing Dependencies

1.1.1 Ubuntu / Debian

$ sudo apt-get install gcc python-dev libgmp3-dev

1.1.2 RHEL / CentOS

$ sudo yum install gcc python-devel gmp-devel

1

https://gmplib.org/

fastecdsa Documentation, Release 1.7.4

2 Chapter 1. Installation

CHAPTER 2

fastecdsa

2.1 fastecdsa.curve

class fastecdsa.curve.Curve(name, p, a, b, q, gx, gy, oid=None)
Bases: object

Representation of an elliptic curve.

Defines a group for the arithmetic operations of point addition and scalar multiplication. Currently only curves
defined via the equation 𝑦2 ≡ 𝑥3 + 𝑎𝑥+ 𝑏 (mod 𝑝) are supported.

Attributes:

name (string): The name of the curve
p (long): The value of 𝑝 in the curve equation.
a (long): The value of 𝑎 in the curve equation.
b (long): The value of 𝑏 in the curve equation.
q (long): The order of the base point of the curve.
oid (long): The object identifier of the curve.

G
The base point of the curve.

For the purposes of ECDSA this point is multiplied by a private key to obtain the corresponding public
key. Make a property to avoid cyclic dependency of Point on Curve (a point lies on a curve) and Curve on
Point (curves have a base point).

__init__(name, p, a, b, q, gx, gy, oid=None)
Initialize the parameters of an elliptic curve.

WARNING: Do not generate your own parameters unless you know what you are doing or you could
generate a curve severely less secure than you think. Even then, consider using a standardized curve for
the sake of interoperability.

Currently only curves defined via the equation 𝑦2 ≡ 𝑥3 + 𝑎𝑥+ 𝑏 (mod 𝑝) are supported.

3

fastecdsa Documentation, Release 1.7.4

Args:

name (string): The name of the curve
p (long): The value of 𝑝 in the curve equation.
a (long): The value of 𝑎 in the curve equation.
b (long): The value of 𝑏 in the curve equation.
q (long): The order of the base point of the curve.
gx (long): The x coordinate of the base point of the curve.
gy (long): The y coordinate of the base point of the curve.
oid (str): The object identifier of the curve.

__repr__()
Return repr(self).

__weakref__
list of weak references to the object (if defined)

evaluate(x)
Evaluate the elliptic curve polynomial at ‘x’

Args: x (int): The position to evaluate the polynomial at

Returns: int: the value of (𝑥3 + 𝑎𝑥+ 𝑏)𝑚𝑜𝑑𝑝

classmethod get_curve_by_oid(oid)
Get a curve via it’s object identifier.

is_point_on_curve(P)
Check if a point lies on this curve.

The check is done by evaluating the curve equation 𝑦2 ≡ 𝑥3 + 𝑎𝑥 + 𝑏 (mod 𝑝) at the given point (𝑥, 𝑦)
with this curve’s domain parameters (𝑎, 𝑏, 𝑝). If the congruence holds, then the point lies on this curve.

Args: P (long, long): A tuple representing the point 𝑃 as an (𝑥, 𝑦) coordinate pair.

Returns: bool: True if the point lies on this curve, otherwise False.

2.2 fastecdsa.ecdsa

exception fastecdsa.ecdsa.EcdsaError(msg)
Bases: Exception

fastecdsa.ecdsa.sign(msg, d, curve=P256, hashfunc=<built-in function openssl_sha256>, pre-
hashed=False)

Sign a message using the elliptic curve digital signature algorithm.

The elliptic curve signature algorithm is described in full in FIPS 186-4 Section 6. Please refer to http://nvlpubs.
nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf for more information.

Args:

msg (str|bytes|bytearray): A message to be signed.
d (long): The ECDSA private key of the signer.
curve (fastecdsa.curve.Curve): The curve to be used to sign the message.
hashfunc (_hashlib.HASH): The hash function used to compress the message.

fastecdsa.ecdsa.verify(sig, msg, Q, curve=P256, hashfunc=<built-in function openssl_sha256>)
Verify a message signature using the elliptic curve digital signature algorithm.

4 Chapter 2. fastecdsa

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

fastecdsa Documentation, Release 1.7.4

The elliptic curve signature algorithm is described in full in FIPS 186-4 Section 6. Please refer to http://nvlpubs.
nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf for more information.

Args:

sig (long, long): The signature for the message.
msg (str|bytes|bytearray): A message to be signed.
Q (fastecdsa.point.Point): The ECDSA public key of the signer.
curve (fastecdsa.curve.Curve): The curve to be used to sign the message.
hashfunc (_hashlib.HASH): The hash function used to compress the message.

Returns: bool: True if the signature is valid, False otherwise.

Raises:

fastecdsa.ecdsa.EcdsaError: If the signature or public key are invalid. Invalid signature in this case
means that it has values less than 1 or greater than the curve order.

2.3 fastecdsa.encoding

class fastecdsa.encoding.KeyEncoder
Bases: object

Base class that any encoding class for EC keys should derive from.

All overriding methods should be static.

class fastecdsa.encoding.SigEncoder
Bases: object

Base class that any encoding class for EC signatures should derive from.

All overriding methods should be static.

2.4 fastecdsa.encoding.der

class fastecdsa.encoding.der.DEREncoder
Bases: fastecdsa.encoding.SigEncoder

static decode_signature(sig)
Decode an EC signature from serialized DER format as described in https://tools.ietf.org/html/rfc2459
(section 7.2.2) and as detailed by bip-0066

Returns (r,s)

static encode_signature(r, s)

Encode an EC signature in serialized DER format as described in https://tools.ietf.org/html/rfc2459
(section 7.2.2) and as detailed by bip-0066

Args: r, s

Returns: bytes: The DER encoded signature

exception fastecdsa.encoding.der.InvalidDerSignature
Bases: Exception

2.3. fastecdsa.encoding 5

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://tools.ietf.org/html/rfc2459
https://tools.ietf.org/html/rfc2459

fastecdsa Documentation, Release 1.7.4

2.5 fastecdsa.encoding.pem

class fastecdsa.encoding.pem.PEMEncoder
Bases: fastecdsa.encoding.KeyEncoder

static decode_private_key(pemdata)
Decode an EC key as described in RFC 5915 and RFC 5480.

Args: pemdata (bytes): A sequence of bytes representing an encoded EC key.

Returns: (long, fastecdsa.point.Point): A private key, public key tuple. If the encoded key was a public
key the first entry in the tuple is None.

static decode_public_key(pemdata, curve=None)
Delegate to private key decoding but return only the public key

static encode_private_key(d, Q=None, curve=None)
Encode an EC keypair as described in RFC 5915.

Args:

d (long): An ECDSA private key.
Q (fastecdsa.point.Point): The ECDSA public key.
curve (fastecdsa.curve.Curve): The curve that the private key is for.

Returns: str: The ASCII armored encoded EC keypair.

static encode_public_key(Q)
Encode an EC public key as described in RFC 5480.

Returns: str: The ASCII armored encoded EC public key.

2.6 fastecdsa.encoding.sec1

exception fastecdsa.encoding.sec1.InvalidSEC1PublicKey
Bases: Exception

class fastecdsa.encoding.sec1.SEC1Encoder
Bases: fastecdsa.encoding.KeyEncoder

static decode_public_key(key, curve)

Decode a public key as described in http://www.secg.org/SEC1-Ver-1.0.pdf in sections 2.3.3/2.3.4

compressed: 04 + x_bytes + y_bytes uncompressed: 02 or 03 + x_bytes

Args: curve (Curve): Curve to use when decoding the public key key (bytes): public key encoded using
the SEC1 format

Returns: Point: The decoded public key

Raises: InvalidSEC1PublicKey

static encode_public_key(point, compressed=True)

Encode a public key as described in http://www.secg.org/SEC1-Ver-1.0.pdf

in sections 2.3.3/2.3.4 compressed: 04 + x_bytes + y_bytes uncompressed: 02 or 03 + x_bytes

Args: compressed (bool): Set to False if you want an uncompressed format

Returns: bytes: The SEC1 encoded public key

6 Chapter 2. fastecdsa

https://tools.ietf.org/html/rfc5915.html
https://tools.ietf.org/html/rfc5480
https://tools.ietf.org/html/rfc5915.html
https://tools.ietf.org/html/rfc5480
http://www.secg.org/SEC1-Ver-1.0.pdf
http://www.secg.org/SEC1-Ver-1.0.pdf

fastecdsa Documentation, Release 1.7.4

2.7 fastecdsa.keys

fastecdsa.keys.export_key(key, curve=None, filepath=None, encoder=<class
’fastecdsa.encoding.pem.PEMEncoder’>)

Export a public or private EC key in PEM format.

Args:

key (fastecdsa.point.Point | long): A public or private EC key
curve (fastecdsa.curve.Curve): The curve corresponding to the key (required if the key is a private key)
filepath (str): Where to save the exported key. If None the key is simply printed.
encoder (fastecdsa.encoding.KeyEncoder): The class used to encode the key

fastecdsa.keys.gen_keypair(curve)
Generate a keypair that consists of a private key and a public key.

The private key 𝑑 is an integer generated via a cryptographically secure random number generator that lies in
the range [1, 𝑛), where 𝑛 is the curve order. The public key 𝑄 is a point on the curve calculated as 𝑄 = 𝑑𝐺,
where 𝐺 is the curve’s base point.

Args: curve (fastecdsa.curve.Curve): The curve over which the keypair will be calulated.

Returns: long, fastecdsa.point.Point: Returns a tuple with the private key first and public key second.

fastecdsa.keys.gen_private_key(curve, randfunc=<built-in function urandom>)
Generate a private key to sign data with.

The private key 𝑑 is an integer generated via a cryptographically secure random number generator that lies in
the range [1, 𝑛), where 𝑛 is the curve order. The default random number generator used is /dev/urandom.

Args:

curve (fastecdsa.curve.Curve): The curve over which the key will be calulated.
randfunc (function): A function taking one argument ‘n’ and returning a bytestring of n random bytes
suitable for cryptographic use. The default is “os.urandom”

Returns: long: Returns a positive integer smaller than the curve order.

fastecdsa.keys.get_public_key(d, curve)
Generate a public key from a private key.

The public key 𝑄 is a point on the curve calculated as 𝑄 = 𝑑𝐺, where 𝑑 is the private key and 𝐺 is the curve’s
base point.

Args:

d (long): An integer representing the private key.
curve (fastecdsa.curve.Curve): The curve over which the key will be calulated.

Returns: fastecdsa.point.Point: The public key, a point on the given curve.

fastecdsa.keys.get_public_keys_from_sig(sig, msg, curve=P256, hashfunc=<built-in func-
tion openssl_sha256>)

Recover the public keys that can verify a signature / message pair.

Args:

sig (long, long): A ECDSA signature.
msg (str|bytes|bytearray): The message corresponding to the signature.
curve (fastecdsa.curve.Curve): The curve used to sign the message.
hashfunc (_hashlib.HASH): The hash function used to compress the message.

2.7. fastecdsa.keys 7

fastecdsa Documentation, Release 1.7.4

Returns:

(fastecdsa.point.Point, fastecdsa.point.Point): The public keys that can verify the signature for the
message.

fastecdsa.keys.import_key(filepath, curve=None, public=False, decoder=<class
’fastecdsa.encoding.pem.PEMEncoder’>)

Import a public or private EC key in PEM format.

Args:

filepath (str): The location of the key file
public (bool): Indicates if the key file is a public key
decoder (fastecdsa.encoding.KeyEncoder): The class used to parse the key

Returns: (long, fastecdsa.point.Point): A (private key, public key) tuple. If a public key was imported then the
first value will be None.

2.8 fastecdsa.point

exception fastecdsa.point.CurveMismatchError(curve1, curve2)
Bases: Exception

__init__(curve1, curve2)
Initialize self. See help(type(self)) for accurate signature.

__weakref__
list of weak references to the object (if defined)

class fastecdsa.point.Point(x, y, curve=P256)
Bases: object

Representation of a point on an elliptic curve.

Attributes:

x (long): The x coordinate of the point.
y (long): The y coordinate of the point.
curve (Curve): The curve that the point lies on.

__add__(other)
Add two points on the same elliptic curve.

Args:

self (Point): a point 𝑃 on the curve
other (Point): a point 𝑄 on the curve

Returns: Point: A point 𝑅 such that 𝑅 = 𝑃 +𝑄

__eq__(other)
Return self==value.

__init__(x, y, curve=P256)
Initialize a point on an elliptic curve.

The x and y parameters must satisfy the equation 𝑦2 ≡ 𝑥3 + 𝑎𝑥 + 𝑏 (mod 𝑝), where a, b, and p are
attributes of the curve parameter.

Args:

x (long): The x coordinate of the point.

8 Chapter 2. fastecdsa

fastecdsa Documentation, Release 1.7.4

y (long): The y coordinate of the point.
curve (Curve): The curve that the point lies on.

__mul__(scalar)
Multiply a Point on an elliptic curve by an integer.

Args:

self (Point): a point 𝑃 on the curve
other (long): an integer 𝑑 ∈ Zq where 𝑞 is the order of the curve that 𝑃 is on

Returns: Point: A point 𝑅 such that 𝑅 = 𝑃 * 𝑑

__neg__()
Return the negation of a Point i.e. the points reflection over the x-axis.

Args:

self (Point): a point 𝑃 on the curve

Returns: Point: A point 𝑅 = (𝑃𝑥,−𝑃𝑦)

__radd__(other)
Add two points on the same elliptic curve.

Args:

self (Point): a point 𝑃 on the curve
other (Point): a point 𝑄 on the curve

Returns: Point: A point 𝑅 such that 𝑅 = 𝑃 +𝑄

__repr__()
Return repr(self).

__rmul__(scalar)
Multiply a Point on an elliptic curve by an integer.

Args:

self (Point): a point 𝑃 on the curve
other (long): an integer 𝑑 ∈ Zq where 𝑞 is the order of the curve that 𝑃 is on

Returns: Point: A point 𝑅 such that 𝑅 = 𝑑 * 𝑃

__str__()
Return str(self).

__sub__(other)
Subtract two points on the same elliptic curve.

Args:

self (Point): a point 𝑃 on the curve
other (Point): a point 𝑄 on the curve

Returns: Point: A point 𝑅 such that 𝑅 = 𝑃 −𝑄

__weakref__
list of weak references to the object (if defined)

2.8. fastecdsa.point 9

fastecdsa Documentation, Release 1.7.4

2.9 fastecdsa.util

class fastecdsa.util.RFC6979(msg, x, q, hashfunc)
Bases: object

Generate a nonce per RFC6979.

In order to avoid reusing a nonce with the same key when signing two different messages (which leaks the
private key) RFC6979 provides a deterministic method for generating nonces. This is based on using a pseudo-
random function (HMAC) to derive a nonce from the message and private key. More info here: http://tools.ietf.
org/html/rfc6979.

Attributes:

msg (string): A message being signed.
x (long): An ECDSA private key.
q (long): The order of the generator point of the curve being used to sign the message.
hashfunc (_hashlib.HASH): The hash function used to compress the message.

gen_nonce()
http://tools.ietf.org/html/rfc6979#section-3.2

fastecdsa.util.mod_sqrt(a, p)
Compute the square root of 𝑎 (mod 𝑝)

In other words, find a value 𝑥 such that 𝑥2 ≡ 𝑎 (mod 𝑝).

Args:

a (long): The value whose root to take.
p (long): The prime whose field to perform the square root in.

Returns: (long, long): the two values of 𝑥 satisfying 𝑥2 ≡ 𝑎 (mod 𝑝).

fastecdsa.util.msg_bytes(msg)
Return bytes in a consistent way for a given message.

The message is expected to be either a string, bytes, or an array of bytes.

Args:

msg (str|bytes|bytearray): The data to transform.

Returns: bytes: The byte encoded data.

Raises: ValueError: If the data cannot be encoded as bytes.

10 Chapter 2. fastecdsa

http://tools.ietf.org/html/rfc6979
http://tools.ietf.org/html/rfc6979
http://tools.ietf.org/html/rfc6979#section-3.2

Python Module Index

f
fastecdsa.curve, 3
fastecdsa.ecdsa, 4
fastecdsa.encoding, 5
fastecdsa.encoding.der, 5
fastecdsa.encoding.pem, 6
fastecdsa.encoding.sec1, 6
fastecdsa.keys, 7
fastecdsa.point, 8
fastecdsa.util, 10

11

fastecdsa Documentation, Release 1.7.4

12 Python Module Index

Index

Symbols
__add__() (fastecdsa.point.Point method), 8
__eq__() (fastecdsa.point.Point method), 8
__init__() (fastecdsa.curve.Curve method), 3
__init__() (fastecdsa.point.CurveMismatchError

method), 8
__init__() (fastecdsa.point.Point method), 8
__mul__() (fastecdsa.point.Point method), 9
__neg__() (fastecdsa.point.Point method), 9
__radd__() (fastecdsa.point.Point method), 9
__repr__() (fastecdsa.curve.Curve method), 4
__repr__() (fastecdsa.point.Point method), 9
__rmul__() (fastecdsa.point.Point method), 9
__str__() (fastecdsa.point.Point method), 9
__sub__() (fastecdsa.point.Point method), 9
__weakref__ (fastecdsa.curve.Curve attribute), 4
__weakref__ (fastecdsa.point.CurveMismatchError

attribute), 8
__weakref__ (fastecdsa.point.Point attribute), 9

C
Curve (class in fastecdsa.curve), 3
CurveMismatchError, 8

D
decode_private_key()

(fastecdsa.encoding.pem.PEMEncoder static
method), 6

decode_public_key()
(fastecdsa.encoding.pem.PEMEncoder static
method), 6

decode_public_key()
(fastecdsa.encoding.sec1.SEC1Encoder static
method), 6

decode_signature()
(fastecdsa.encoding.der.DEREncoder static
method), 5

DEREncoder (class in fastecdsa.encoding.der), 5

E
EcdsaError, 4
encode_private_key()

(fastecdsa.encoding.pem.PEMEncoder static
method), 6

encode_public_key()
(fastecdsa.encoding.pem.PEMEncoder static
method), 6

encode_public_key()
(fastecdsa.encoding.sec1.SEC1Encoder static
method), 6

encode_signature()
(fastecdsa.encoding.der.DEREncoder static
method), 5

evaluate() (fastecdsa.curve.Curve method), 4
export_key() (in module fastecdsa.keys), 7

F
fastecdsa.curve (module), 3
fastecdsa.ecdsa (module), 4
fastecdsa.encoding (module), 5
fastecdsa.encoding.der (module), 5
fastecdsa.encoding.pem (module), 6
fastecdsa.encoding.sec1 (module), 6
fastecdsa.keys (module), 7
fastecdsa.point (module), 8
fastecdsa.util (module), 10

G
G (fastecdsa.curve.Curve attribute), 3
gen_keypair() (in module fastecdsa.keys), 7
gen_nonce() (fastecdsa.util.RFC6979 method), 10
gen_private_key() (in module fastecdsa.keys), 7
get_curve_by_oid() (fastecdsa.curve.Curve class

method), 4
get_public_key() (in module fastecdsa.keys), 7
get_public_keys_from_sig() (in module

fastecdsa.keys), 7

13

fastecdsa Documentation, Release 1.7.4

I
import_key() (in module fastecdsa.keys), 8
InvalidDerSignature, 5
InvalidSEC1PublicKey, 6
is_point_on_curve() (fastecdsa.curve.Curve

method), 4

K
KeyEncoder (class in fastecdsa.encoding), 5

M
mod_sqrt() (in module fastecdsa.util), 10
msg_bytes() (in module fastecdsa.util), 10

P
PEMEncoder (class in fastecdsa.encoding.pem), 6
Point (class in fastecdsa.point), 8

R
RFC6979 (class in fastecdsa.util), 10

S
SEC1Encoder (class in fastecdsa.encoding.sec1), 6
SigEncoder (class in fastecdsa.encoding), 5
sign() (in module fastecdsa.ecdsa), 4

V
verify() (in module fastecdsa.ecdsa), 4

14 Index

	Installation
	Installing Dependencies

	fastecdsa
	fastecdsa.curve
	fastecdsa.ecdsa
	fastecdsa.encoding
	fastecdsa.encoding.der
	fastecdsa.encoding.pem
	fastecdsa.encoding.sec1
	fastecdsa.keys
	fastecdsa.point
	fastecdsa.util

	Python Module Index
	Index

