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Installation

The only actively supported operating systems at this time are most Linux distros and OS X.

You can use pip: $ pip install fastecdsa or clone the repo and use
$ python setup.py install. Note that you need to have a C compiler (you can check this via
e.g. $ which gcc or $ which clang). You  also need to have  GMP [https://gmplib.org/] on your system
as the underlying C code in this package includes the gmp.h header  (and links against gmp
via the -lgmp flag).


Installing Dependencies


Ubuntu / Debian

$ sudo apt-get install gcc python-dev libgmp3-dev








RHEL / CentOS

$ sudo yum install gcc python-devel gmp-devel













          

      

      

    

  

    
      
          
            
  
fastecdsa


fastecdsa.asn1


	
fastecdsa.asn1.decode_key(pemdata)

	Decode an EC key as described in RFC 5915 [https://tools.ietf.org/html/rfc5915.html] and
RFC 5480 [https://tools.ietf.org/html/rfc5480].


	Args:

	pemdata (bytes): A sequence of bytes representing an encoded EC key.



	Returns:

	(long, fastecdsa.point.Point): A private key, public key tuple. If the encoded key was a
public key the first entry in the tuple is None.










	
fastecdsa.asn1.encode_keypair(d, Q)

	Encode an EC keypair as described in RFC 5915 [https://tools.ietf.org/html/rfc5915.html].


	Args:

	
d (long): An ECDSA private key.

Q (fastecdsa.point.Point): The ECDSA public key.





	Returns:

	str: The ASCII armored encoded EC keypair.










	
fastecdsa.asn1.encode_public_key(Q)

	Encode an EC public key as described in RFC 5480 [https://tools.ietf.org/html/rfc5480].


	Args:

	Q (fastecdsa.point.Point): The ECDSA public key.



	Returns:

	str: The ASCII armored encoded EC public key.












fastecdsa.curve


	
class fastecdsa.curve.Curve(name, p, a, b, q, gx, gy, oid=None)

	Bases: object

Representation of an elliptic curve.

Defines a group for  the arithmetic operations of point addition and scalar multiplication.
Currently only curves defined via the equation \(y^2 \equiv x^3 + ax + b \pmod{p}\) are
supported.


	Attributes:

	
name (string): The name of the curve

p (long): The value of \(p\) in the curve equation.

a (long): The value of \(a\) in the curve equation.

b (long): The value of \(b\) in the curve equation.

q (long): The order of the base point of the curve.

oid (long): The object identifier of the curve.








	
G

	The base point of the curve.

For the purposes of ECDSA this point is multiplied by a private key to obtain the
corresponding public key. Make a property to avoid cyclic dependency of Point on Curve
(a point lies on a curve) and Curve on Point (curves have a base point).






	
__init__(name, p, a, b, q, gx, gy, oid=None)

	Initialize the parameters of an elliptic curve.

WARNING: Do not generate your own parameters unless you know what you are doing or you could
generate a curve severely less secure than you think. Even then, consider using a
standardized curve for the sake of interoperability.

Currently only curves defined via the equation \(y^2 \equiv x^3 + ax + b \pmod{p}\) are
supported.


	Args:

	
name (string): The name of the curve

p (long): The value of \(p\) in the curve equation.

a (long): The value of \(a\) in the curve equation.

b (long): The value of \(b\) in the curve equation.

q (long): The order of the base point of the curve.

gx (long): The x coordinate of the base point of the curve.

gy (long): The y coordinate of the base point of the curve.

oid (str): The object identifier of the curve.












	
__repr__()

	Return repr(self).






	
__weakref__

	list of weak references to the object (if defined)






	
classmethod get_curve_by_oid(oid)

	Get a curve via it’s object identifier.






	
is_point_on_curve(P)

	Check if a point lies on this curve.

The check is done by evaluating the curve equation \(y^2 \equiv x^3 + ax + b \pmod{p}\)
at the given point \((x,y)\) with this curve’s domain parameters \((a, b, p)\). If
the congruence holds, then the point lies on this curve.


	Args:

	P (long, long): A tuple representing the point \(P\) as an \((x, y)\) coordinate
pair.



	Returns:

	bool: True if the point lies on this curve, otherwise False.
















fastecdsa.ecdsa


	
exception fastecdsa.ecdsa.EcdsaError(msg)

	Bases: Exception






	
fastecdsa.ecdsa.sign(msg, d, curve=P256, hashfunc=<built-in function openssl_sha256>)

	Sign a message using the elliptic curve digital signature algorithm.

The elliptic curve signature algorithm is described in full in FIPS 186-4 Section 6. Please
refer to http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf for more information.


	Args:

	
msg (str): A message to be signed.

d (long): The ECDSA private key of the signer.

curve (fastecdsa.curve.Curve): The curve to be used to sign the message.

hashfunc (_hashlib.HASH): The hash function used to compress the message.












	
fastecdsa.ecdsa.verify(sig, msg, Q, curve=P256, hashfunc=<built-in function openssl_sha256>)

	Verify a message signature using the elliptic curve digital signature algorithm.

The elliptic curve signature algorithm is described in full in FIPS 186-4 Section 6. Please
refer to http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf for more information.


	Args:

	
sig (long, long): The signature for the message.

msg (str): A message to be signed.

Q (fastecdsa.point.Point): The ECDSA public key of the signer.

curve (fastecdsa.curve.Curve): The curve to be used to sign the message.

hashfunc (_hashlib.HASH): The hash function used to compress the message.





	Returns:

	bool: True if the signature is valid, False otherwise.



	Raises:

	
	fastecdsa.ecdsa.EcdsaError: If the signature or public key are invalid. Invalid signature

	in this case means that it has values less than 1 or greater than the curve order.
















fastecdsa.keys


	
fastecdsa.keys.export_key(key, curve=None, filepath=None)

	Export a public or private EC key in PEM format.


	Args:

	
key (fastecdsa.point.Point | long): A public or private EC key

curve (fastecdsa.curve.Curve): The curve corresponding to the key (required if the
key is a private key)

filepath (str): Where to save the exported key. If None the key is simply printed.












	
fastecdsa.keys.gen_keypair(curve)

	Generate a keypair that consists of a private key and a public key.

The private key \(d\) is an integer generated via a cryptographically secure random number
generator that lies in the range \([1,n)\), where \(n\) is the curve order. The public
key \(Q\) is a point on the curve calculated as \(Q = dG\), where \(G\) is the
curve’s base point.


	Args:

	curve (fastecdsa.curve.Curve): The curve over which the keypair will be calulated.



	Returns:

	long, fastecdsa.point.Point: Returns a tuple with the private key first and public key
second.










	
fastecdsa.keys.gen_private_key(curve)

	Generate a private key to sign data with.

The private key \(d\) is an integer generated via a cryptographically secure random number
generator that lies in the range \([1,n)\), where \(n\) is the curve order. The specific
random number generator used is /dev/urandom.


	Args:

	curve (fastecdsa.curve.Curve): The curve over which the key will be calulated.



	Returns:

	long: Returns a positive integer smaller than the curve order.










	
fastecdsa.keys.get_public_key(d, curve)

	Generate a public key from a private key.

The public key \(Q\) is a point on the curve calculated as \(Q = dG\), where \(d\)
is the private key and \(G\) is the curve’s base point.


	Args:

	
d (long): An integer representing the private key.

curve (fastecdsa.curve.Curve): The curve over which the key will be calulated.





	Returns:

	fastecdsa.point.Point: The public key, a point on the given curve.










	
fastecdsa.keys.get_public_keys_from_sig(sig, msg, curve=P256, hashfunc=<built-in function openssl_sha256>)

	Recover the public keys that can verify a signature / message pair.


	Args:

	
sig (long, long): A ECDSA signature.

msg (str): The message corresponding to the signature.

curve (fastecdsa.curve.Curve): The curve used to sign the message.

hashfunc (_hashlib.HASH): The hash function used to compress the message.





	Returns:

	
	(fastecdsa.point.Point, fastecdsa.point.Point): The public keys that can verify the

	signature for the message.














	
fastecdsa.keys.import_key(filepath)

	Import a public or private EC key in PEM format.


	Args:

	filepath (str): The location of the key file



	Returns:

	(long, fastecdsa.point.Point): A (private key, public key) tuple. If a public key was
imported then the first value will be None.












fastecdsa.point


	
exception fastecdsa.point.CurveMismatchError(curve1, curve2)

	Bases: Exception


	
__init__(curve1, curve2)

	Initialize self.  See help(type(self)) for accurate signature.






	
__weakref__

	list of weak references to the object (if defined)










	
class fastecdsa.point.Point(x, y, curve=P256)

	Bases: object

Representation of a point on an elliptic curve.


	Attributes:

	
x (long): The x coordinate of the point.

y (long): The y coordinate of the point.

curve (Curve): The curve that the point lies on.








	
__add__(other)

	Add two points on the same elliptic curve.


	Args:

	
self (Point): a point \(P\) on the curve

other (Point): a point \(Q\) on the curve





	Returns:

	Point: A point \(R\) such that \(R = P + Q\)










	
__eq__(other)

	Return self==value.






	
__init__(x, y, curve=P256)

	Initialize a point on an elliptic curve.

The x and y parameters must satisfy the equation \(y^2 \equiv x^3 + ax + b \pmod{p}\),
where a, b, and p are attributes of the curve parameter.


	Args:

	
x (long): The x coordinate of the point.

y (long): The y coordinate of the point.

curve (Curve): The curve that the point lies on.












	
__mul__(scalar)

	Multiply a Point on an elliptic curve by an integer.


	Args:

	
self (Point): a point \(P\) on the curve

other (long): an integer \(d \in \mathbb{Z_q}\) where \(q\) is the order of
the curve that \(P\) is on





	Returns:

	Point: A point \(R\) such that \(R = P * d\)










	
__neg__()

	Return the negation of a Point i.e. the points reflection over the x-axis.


	Args:

	
self (Point): a point \(P\) on the curve





	Returns:

	Point: A point \(R = (P_x, -P_y)\)










	
__radd__(other)

	Add two points on the same elliptic curve.


	Args:

	
self (Point): a point \(P\) on the curve

other (Point): a point \(Q\) on the curve





	Returns:

	Point: A point \(R\) such that \(R = P + Q\)










	
__repr__()

	Return repr(self).






	
__rmul__(scalar)

	Multiply a Point on an elliptic curve by an integer.


	Args:

	
self (Point): a point \(P\) on the curve

other (long): an integer \(d \in \mathbb{Z_q}\) where \(q\) is the order of
the curve that \(P\) is on





	Returns:

	Point: A point \(R\) such that \(R = d * P\)










	
__str__()

	Return str(self).






	
__sub__(other)

	Subtract two points on the same elliptic curve.


	Args:

	
self (Point): a point \(P\) on the curve

other (Point): a point \(Q\) on the curve





	Returns:

	Point: A point \(R\) such that \(R = P - Q\)










	
__weakref__

	list of weak references to the object (if defined)












fastecdsa.util


	
class fastecdsa.util.RFC6979(msg, x, q, hashfunc)

	Bases: object

Generate a nonce per RFC6979.

In order to avoid reusing a nonce with the same key when signing two different messages (which
leaks the private key) RFC6979 provides a deterministic method for generating nonces. This is
based on using a pseudo-random function (HMAC) to derive a nonce from the message and private
key. More info here: http://tools.ietf.org/html/rfc6979.


	Attributes:

	
msg (string): A message being signed.

x (long): An ECDSA private key.

q (long): The order of the generator point of the curve being used to sign the message.

hashfunc (_hashlib.HASH): The hash function used to compress the message.








	
gen_nonce()

	http://tools.ietf.org/html/rfc6979#section-3.2










	
fastecdsa.util.mod_sqrt(a, p)

	Compute the square root of \(a \pmod{p}\)

In other words, find a value \(x\) such that \(x^2 \equiv a \pmod{p}\).


	Args:

	
a (long): The value whose root to take.

p (long): The prime whose field to perform the square root in.





	Returns:

	(long, long): the two values of \(x\) satisfying \(x^2 \equiv a \pmod{p}\).
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