

Welcome to fastecdsa’s documentation!

Contents:

	Installation
	Installing Dependencies

	fastecdsa
	fastecdsa.asn1

	fastecdsa.curve

	fastecdsa.ecdsa

	fastecdsa.keys

	fastecdsa.point

	fastecdsa.util

Installation

The only actively supported operating systems at this time are most Linux distros and OS X.

You can use pip: $ pip install fastecdsa or clone the repo and use
$ python setup.py install. Note that you need to have a C compiler (you can check this via
e.g. $ which gcc or $ which clang). You also need to have GMP [https://gmplib.org/] on your system
as the underlying C code in this package includes the gmp.h header (and links against gmp
via the -lgmp flag).

Installing Dependencies

Ubuntu / Debian

$ sudo apt-get install gcc python-dev libgmp3-dev

RHEL / CentOS

$ sudo yum install gcc python-devel gmp-devel

fastecdsa

fastecdsa.asn1

	
fastecdsa.asn1.decode_key(pemdata)

	Decode an EC key as described in RFC 5915 [https://tools.ietf.org/html/rfc5915.html] and
RFC 5480 [https://tools.ietf.org/html/rfc5480].

	Args:

	pemdata (bytes): A sequence of bytes representing an encoded EC key.

	Returns:

	(long, fastecdsa.point.Point): A private key, public key tuple. If the encoded key was a
public key the first entry in the tuple is None.

	
fastecdsa.asn1.encode_keypair(d, Q)

	Encode an EC keypair as described in RFC 5915 [https://tools.ietf.org/html/rfc5915.html].

	Args:

	
d (long): An ECDSA private key.

Q (fastecdsa.point.Point): The ECDSA public key.

	Returns:

	str: The ASCII armored encoded EC keypair.

	
fastecdsa.asn1.encode_public_key(Q)

	Encode an EC public key as described in RFC 5480 [https://tools.ietf.org/html/rfc5480].

	Args:

	Q (fastecdsa.point.Point): The ECDSA public key.

	Returns:

	str: The ASCII armored encoded EC public key.

fastecdsa.curve

	
class fastecdsa.curve.Curve(name, p, a, b, q, gx, gy, oid=None)

	Bases: object

Representation of an elliptic curve.

Defines a group for the arithmetic operations of point addition and scalar multiplication.
Currently only curves defined via the equation \(y^2 \equiv x^3 + ax + b \pmod{p}\) are
supported.

	Attributes:

	
name (string): The name of the curve

p (long): The value of \(p\) in the curve equation.

a (long): The value of \(a\) in the curve equation.

b (long): The value of \(b\) in the curve equation.

q (long): The order of the base point of the curve.

oid (long): The object identifier of the curve.

	
G

	The base point of the curve.

For the purposes of ECDSA this point is multiplied by a private key to obtain the
corresponding public key. Make a property to avoid cyclic dependency of Point on Curve
(a point lies on a curve) and Curve on Point (curves have a base point).

	
__init__(name, p, a, b, q, gx, gy, oid=None)

	Initialize the parameters of an elliptic curve.

WARNING: Do not generate your own parameters unless you know what you are doing or you could
generate a curve severely less secure than you think. Even then, consider using a
standardized curve for the sake of interoperability.

Currently only curves defined via the equation \(y^2 \equiv x^3 + ax + b \pmod{p}\) are
supported.

	Args:

	
name (string): The name of the curve

p (long): The value of \(p\) in the curve equation.

a (long): The value of \(a\) in the curve equation.

b (long): The value of \(b\) in the curve equation.

q (long): The order of the base point of the curve.

gx (long): The x coordinate of the base point of the curve.

gy (long): The y coordinate of the base point of the curve.

oid (str): The object identifier of the curve.

	
__repr__()

	Return repr(self).

	
__weakref__

	list of weak references to the object (if defined)

	
classmethod get_curve_by_oid(oid)

	Get a curve via it’s object identifier.

	
is_point_on_curve(P)

	Check if a point lies on this curve.

The check is done by evaluating the curve equation \(y^2 \equiv x^3 + ax + b \pmod{p}\)
at the given point \((x,y)\) with this curve’s domain parameters \((a, b, p)\). If
the congruence holds, then the point lies on this curve.

	Args:

	P (long, long): A tuple representing the point \(P\) as an \((x, y)\) coordinate
pair.

	Returns:

	bool: True if the point lies on this curve, otherwise False.

fastecdsa.ecdsa

	
exception fastecdsa.ecdsa.EcdsaError(msg)

	Bases: Exception

	
fastecdsa.ecdsa.sign(msg, d, curve=P256, hashfunc=<built-in function openssl_sha256>)

	Sign a message using the elliptic curve digital signature algorithm.

The elliptic curve signature algorithm is described in full in FIPS 186-4 Section 6. Please
refer to http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf for more information.

	Args:

	
msg (str): A message to be signed.

d (long): The ECDSA private key of the signer.

curve (fastecdsa.curve.Curve): The curve to be used to sign the message.

hashfunc (_hashlib.HASH): The hash function used to compress the message.

	
fastecdsa.ecdsa.verify(sig, msg, Q, curve=P256, hashfunc=<built-in function openssl_sha256>)

	Verify a message signature using the elliptic curve digital signature algorithm.

The elliptic curve signature algorithm is described in full in FIPS 186-4 Section 6. Please
refer to http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf for more information.

	Args:

	
sig (long, long): The signature for the message.

msg (str): A message to be signed.

Q (fastecdsa.point.Point): The ECDSA public key of the signer.

curve (fastecdsa.curve.Curve): The curve to be used to sign the message.

hashfunc (_hashlib.HASH): The hash function used to compress the message.

	Returns:

	bool: True if the signature is valid, False otherwise.

	Raises:

	
	fastecdsa.ecdsa.EcdsaError: If the signature or public key are invalid. Invalid signature

	in this case means that it has values less than 1 or greater than the curve order.

fastecdsa.keys

	
fastecdsa.keys.export_key(key, curve=None, filepath=None)

	Export a public or private EC key in PEM format.

	Args:

	
key (fastecdsa.point.Point | long): A public or private EC key

curve (fastecdsa.curve.Curve): The curve corresponding to the key (required if the
key is a private key)

filepath (str): Where to save the exported key. If None the key is simply printed.

	
fastecdsa.keys.gen_keypair(curve)

	Generate a keypair that consists of a private key and a public key.

The private key \(d\) is an integer generated via a cryptographically secure random number
generator that lies in the range \([1,n)\), where \(n\) is the curve order. The public
key \(Q\) is a point on the curve calculated as \(Q = dG\), where \(G\) is the
curve’s base point.

	Args:

	curve (fastecdsa.curve.Curve): The curve over which the keypair will be calulated.

	Returns:

	long, fastecdsa.point.Point: Returns a tuple with the private key first and public key
second.

	
fastecdsa.keys.gen_private_key(curve)

	Generate a private key to sign data with.

The private key \(d\) is an integer generated via a cryptographically secure random number
generator that lies in the range \([1,n)\), where \(n\) is the curve order. The specific
random number generator used is /dev/urandom.

	Args:

	curve (fastecdsa.curve.Curve): The curve over which the key will be calulated.

	Returns:

	long: Returns a positive integer smaller than the curve order.

	
fastecdsa.keys.get_public_key(d, curve)

	Generate a public key from a private key.

The public key \(Q\) is a point on the curve calculated as \(Q = dG\), where \(d\)
is the private key and \(G\) is the curve’s base point.

	Args:

	
d (long): An integer representing the private key.

curve (fastecdsa.curve.Curve): The curve over which the key will be calulated.

	Returns:

	fastecdsa.point.Point: The public key, a point on the given curve.

	
fastecdsa.keys.get_public_keys_from_sig(sig, msg, curve=P256, hashfunc=<built-in function openssl_sha256>)

	Recover the public keys that can verify a signature / message pair.

	Args:

	
sig (long, long): A ECDSA signature.

msg (str): The message corresponding to the signature.

curve (fastecdsa.curve.Curve): The curve used to sign the message.

hashfunc (_hashlib.HASH): The hash function used to compress the message.

	Returns:

	
	(fastecdsa.point.Point, fastecdsa.point.Point): The public keys that can verify the

	signature for the message.

	
fastecdsa.keys.import_key(filepath)

	Import a public or private EC key in PEM format.

	Args:

	filepath (str): The location of the key file

	Returns:

	(long, fastecdsa.point.Point): A (private key, public key) tuple. If a public key was
imported then the first value will be None.

fastecdsa.point

	
exception fastecdsa.point.CurveMismatchError(curve1, curve2)

	Bases: Exception

	
__init__(curve1, curve2)

	Initialize self. See help(type(self)) for accurate signature.

	
__weakref__

	list of weak references to the object (if defined)

	
class fastecdsa.point.Point(x, y, curve=P256)

	Bases: object

Representation of a point on an elliptic curve.

	Attributes:

	
x (long): The x coordinate of the point.

y (long): The y coordinate of the point.

curve (Curve): The curve that the point lies on.

	
__add__(other)

	Add two points on the same elliptic curve.

	Args:

	
self (Point): a point \(P\) on the curve

other (Point): a point \(Q\) on the curve

	Returns:

	Point: A point \(R\) such that \(R = P + Q\)

	
__eq__(other)

	Return self==value.

	
__init__(x, y, curve=P256)

	Initialize a point on an elliptic curve.

The x and y parameters must satisfy the equation \(y^2 \equiv x^3 + ax + b \pmod{p}\),
where a, b, and p are attributes of the curve parameter.

	Args:

	
x (long): The x coordinate of the point.

y (long): The y coordinate of the point.

curve (Curve): The curve that the point lies on.

	
__mul__(scalar)

	Multiply a Point on an elliptic curve by an integer.

	Args:

	
self (Point): a point \(P\) on the curve

other (long): an integer \(d \in \mathbb{Z_q}\) where \(q\) is the order of
the curve that \(P\) is on

	Returns:

	Point: A point \(R\) such that \(R = P * d\)

	
__neg__()

	Return the negation of a Point i.e. the points reflection over the x-axis.

	Args:

	
self (Point): a point \(P\) on the curve

	Returns:

	Point: A point \(R = (P_x, -P_y)\)

	
__radd__(other)

	Add two points on the same elliptic curve.

	Args:

	
self (Point): a point \(P\) on the curve

other (Point): a point \(Q\) on the curve

	Returns:

	Point: A point \(R\) such that \(R = P + Q\)

	
__repr__()

	Return repr(self).

	
__rmul__(scalar)

	Multiply a Point on an elliptic curve by an integer.

	Args:

	
self (Point): a point \(P\) on the curve

other (long): an integer \(d \in \mathbb{Z_q}\) where \(q\) is the order of
the curve that \(P\) is on

	Returns:

	Point: A point \(R\) such that \(R = d * P\)

	
__str__()

	Return str(self).

	
__sub__(other)

	Subtract two points on the same elliptic curve.

	Args:

	
self (Point): a point \(P\) on the curve

other (Point): a point \(Q\) on the curve

	Returns:

	Point: A point \(R\) such that \(R = P - Q\)

	
__weakref__

	list of weak references to the object (if defined)

fastecdsa.util

	
class fastecdsa.util.RFC6979(msg, x, q, hashfunc)

	Bases: object

Generate a nonce per RFC6979.

In order to avoid reusing a nonce with the same key when signing two different messages (which
leaks the private key) RFC6979 provides a deterministic method for generating nonces. This is
based on using a pseudo-random function (HMAC) to derive a nonce from the message and private
key. More info here: http://tools.ietf.org/html/rfc6979.

	Attributes:

	
msg (string): A message being signed.

x (long): An ECDSA private key.

q (long): The order of the generator point of the curve being used to sign the message.

hashfunc (_hashlib.HASH): The hash function used to compress the message.

	
gen_nonce()

	http://tools.ietf.org/html/rfc6979#section-3.2

	
fastecdsa.util.mod_sqrt(a, p)

	Compute the square root of \(a \pmod{p}\)

In other words, find a value \(x\) such that \(x^2 \equiv a \pmod{p}\).

	Args:

	
a (long): The value whose root to take.

p (long): The prime whose field to perform the square root in.

	Returns:

	(long, long): the two values of \(x\) satisfying \(x^2 \equiv a \pmod{p}\).

 Python Module Index

 f

 		 	

 		
 f	

 	[image: -]
 	
 fastecdsa	

 	
 	
 fastecdsa.asn1	

 	
 	
 fastecdsa.curve	

 	
 	
 fastecdsa.ecdsa	

 	
 	
 fastecdsa.keys	

 	
 	
 fastecdsa.point	

 	
 	
 fastecdsa.util	

Index

 _
 | C
 | D
 | E
 | F
 | G
 | I
 | M
 | P
 | R
 | S
 | V

_

 	
 	__add__() (fastecdsa.point.Point method)

 	__eq__() (fastecdsa.point.Point method)

 	__init__() (fastecdsa.curve.Curve method)

 	(fastecdsa.point.CurveMismatchError method)

 	(fastecdsa.point.Point method)

 	__mul__() (fastecdsa.point.Point method)

 	__neg__() (fastecdsa.point.Point method)

 	__radd__() (fastecdsa.point.Point method)

 	
 	__repr__() (fastecdsa.curve.Curve method)

 	(fastecdsa.point.Point method)

 	__rmul__() (fastecdsa.point.Point method)

 	__str__() (fastecdsa.point.Point method)

 	__sub__() (fastecdsa.point.Point method)

 	__weakref__ (fastecdsa.curve.Curve attribute)

 	(fastecdsa.point.CurveMismatchError attribute)

 	(fastecdsa.point.Point attribute)

C

 	
 	Curve (class in fastecdsa.curve)

 	
 	CurveMismatchError

D

 	
 	decode_key() (in module fastecdsa.asn1)

E

 	
 	EcdsaError

 	encode_keypair() (in module fastecdsa.asn1)

 	
 	encode_public_key() (in module fastecdsa.asn1)

 	export_key() (in module fastecdsa.keys)

F

 	
 	fastecdsa.asn1 (module)

 	fastecdsa.curve (module)

 	fastecdsa.ecdsa (module)

 	
 	fastecdsa.keys (module)

 	fastecdsa.point (module)

 	fastecdsa.util (module)

G

 	
 	G (fastecdsa.curve.Curve attribute)

 	gen_keypair() (in module fastecdsa.keys)

 	gen_nonce() (fastecdsa.util.RFC6979 method)

 	
 	gen_private_key() (in module fastecdsa.keys)

 	get_curve_by_oid() (fastecdsa.curve.Curve class method)

 	get_public_key() (in module fastecdsa.keys)

 	get_public_keys_from_sig() (in module fastecdsa.keys)

I

 	
 	import_key() (in module fastecdsa.keys)

 	
 	is_point_on_curve() (fastecdsa.curve.Curve method)

M

 	
 	mod_sqrt() (in module fastecdsa.util)

P

 	
 	Point (class in fastecdsa.point)

R

 	
 	RFC6979 (class in fastecdsa.util)

S

 	
 	sign() (in module fastecdsa.ecdsa)

V

 	
 	verify() (in module fastecdsa.ecdsa)

 nav.xhtml

 Table of Contents

 		
 Welcome to fastecdsa’s documentation!

 		
 Installation

 		
 Installing Dependencies

 		
 Ubuntu / Debian

 		
 RHEL / CentOS

 		
 fastecdsa

 		
 fastecdsa.asn1

 		
 fastecdsa.curve

 		
 fastecdsa.ecdsa

 		
 fastecdsa.keys

 		
 fastecdsa.point

 		
 fastecdsa.util

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

